Part Number Hot Search : 
BGA7017 L7512C 90M1T FG1004 2SB17301 TG3515 TDA485 HSM2838C
Product Description
Full Text Search
 

To Download IRG6B330UD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 4/20/10 IRG6B330UDpbf descriptionthis igbt is specifically designed for applications in plasma display panels. this device utilizes advanced trench igbt technology to achieve low v ce(on) and low e pulse tm rating per silicon area which improve panel efficiency. additional features are 150c operating junction temperature and high repetitive peak currentcapability. these features combine to make this igbt a highly efficient, robust and reliable device for pdp applications. features  advanced trench igbt technology  optimized for sustain and energy recovery circuits in pdp applications  low v ce(on) and energy per pulse (e pulse tm ) for improved panel efficiency  high repetitive peak current capability  lead free package  
 gc e g ate collector em itter to-220ab e g n-channel c  v ce min 330 v v ce(on) typ. @ i c = 70a 1.69 v i rp max @ t c = 25c 250 a t j max 150 c key parameters absolute maximum ratings parameter units v ge gate-to-emitter voltage v i c @ t c = 25c continuous collector current, v ge @ 15v a i c @ t c = 100c continuous collector, v ge @ 15v i rp @ t c = 25c repetitive peak current p d @t c = 25c power dissipation w p d @t c = 100c power dissipation linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature for 10 seconds mounting torque, 6-32 or m3 screw n thermal resistance parameter typ. max. units r jc (igbt) thermal resistance junction-to-case-(each igbt)  CCC 0.80 r jc (diode) thermal resistance junction-to-case-(each diode)  1.6 2.4 r cs case-to-sink (flat, greased surface) 0.24 CCC c/w r ja junction-to-ambient (typical socket mount)  CCC 40 weight 6.0 (0.21) CCC g (oz) 250300 -40 to + 150 10lb  in (1.1n  m) 160 63 1.3 max. 40 70 30 e c g downloaded from: http:///

2 www.irf.com    half sine wave with duty cycle = 0.1, ton=2sec.  r is measured at t j of approximately 90c.  pulse width 400s; duty cycle 2%. electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv ces collector-to-emitter breakdown voltage 330 CCC CCC v ? v ces / ? t j breakdown voltage temp. coefficient CCC 0.34 CCC v/c CCC 1.18 1.48 CCC 1.36 1.68 CCC 1.69 2.09 v CCC 2.26 2.76 CCC1.93CCC v ge ( th ) gate threshold voltage 2.6 CCC 5.0 v ? v ge ( th ) / ? t j gate threshold voltage coefficient CCC -11 CCC mv/c i ces collector-to-emitter leakage current CCC 2.0 25 a CCC 5.0 CCC CCC 100 CCC i ges gate-to-emitter forward leakage CCC CCC 100 na gate-to-emitter reverse leakage CCC CCC -100 g fe forward transconductance CCC 50 CCC s q g total gate charge CCC 85 CCC nc q gc gate-to-collector charge CCC 31 CCC t d(on) turn-on dela y time 47 i c = 25a, v cc = 196v t r rise time 37 ns r g = 10 ? , l=200 h, l s = 200nh t d(off) turn-off dela y time 176 t j = 25c t f fall time 99 t d(on) turn-on dela y time 45 i c = 25a, v cc = 196v t r rise time 38 ns r g = 10 ? , l=200 h, l s = 200nh t d(off) turn-off dela y time 228 t j = 150c t f fall time 183 t st shoot through blocking time 100 CCC CCC ns e pulse energy per pulse j c iss input capacitance CCC 2297 CCC c oss output capacitance CCC 141 CCC pf c rss reverse transfer capacitance CCC 74 CCC l c internal collector inductance CCC 5.0 CCC between lead, nh 6mm (0.25in.) l e internal emitter inductance CCC 13 CCC from package diode characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units i f ( av ) average forward current at t c =155c i fsm non repetitive peak surge current CCC CCC 100 a t j = 155c, pw = 6.0ms half sine wave v f forward voltage CCC 1.19 1.3 v CCC 0.94 1.0 t rr reverse recovery time CCC 35 60 ns C C C4 3C C C t j = 25c C C C6 7C C C t j = 125c i f = 8a q r r reverse recovery charge CCC 60 CCC nc t j = 25c di/dt = 200a/s CCC 210 CCC t j = 125c v r = 200v i rr peak recovery current CCC 2.8 CCC a t j = 25c CCC 6.3 CCC t j = 125c static collector-to-emitter voltage v ce(on) v ge = 15v, i ce = 70a, t j = 150c CCC 834 CCC v ce = v ge , i ce = 500 a v ce = 330v, v ge = 0v v ce = 330v, v ge = 0v, t j = 150c CCC 985 CCC v ce = 25v, i ce = 25a v ce = 200v, i c = 25a, v ge = 15v v cc = 240v, v ge = 15v, r g = 5.1 ? v cc = 240v, r g = 5.1 ?, t j = 25c l = 220nh, c= 0.40f, v ge = 15v v cc = 240v, r g = 5.1 ?, t j = 100c and center of die contact v ge = 30v v ge = -30v ? = 1.0mhz, see fig.13 v ge = 0v l = 220nh, c= 0.40f, v ge = 15v conditions v ge = 0v, i ce = 1 ma reference to 25c, i ce = 1ma v ge = 15v, i ce = 120a v ge = 15v, i ce = 25a v ge = 15v, i ce = 70a v ge = 15v, i ce = 40a v ce = 330v, v ge = 0v, t j = 100c i f = 8a i f = 8a, t j = 150c i f = 1a, di/dt = -50a/s, v r =30v v ce = 30v conditions CCC CCC 8.0 a downloaded from: http:///

www.irf.com 3 fig 1. typical output characteristics @ 25c fig 3. typical output characteristics @ 125c fig 4. typical output characteristics @ 150c fig 2. typical output characteristics @ 75c fig 5. typical transfer characteristics fig 6. v ce(on) vs. gate voltage 0481 21 6 v ce (v) 0 40 80 120 160 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 0481 21 6 v ce (v) 0 40 80 120 160 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 0481 21 6 v ce (v) 0 40 80 120 160 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 0 4 8 12 16 v ce (v) 0 40 80 120 160 200 i c e ( a ) v ge = 18v v ge = 15v v ge = 12v v ge = 10v v ge = 8.0v v ge = 6.0v 2 4 6 8 10 12 14 16 v ge (v) 0 50 100 150 200 250 300 i c e ( a ) t j = 25c t j = 150c 0 5 10 15 20 v ge (v) 0 2 4 6 8 10 12 14 v c e ( v ) t j = 25c t j = 150c i c = 25a downloaded from: http:///

4 www.irf.com fig 7. maximum collector current vs. case temperature fig 8. typical repetitive peak current vs. case temperature fig 10. typical e pulse vs. collector-to-emitter voltage fig 9. typical e pulse vs. collector current fig 11. e pulse vs. temperature fig 12. forward bias safe operating area 0 25 50 75 100 125 150 t c , case temperature (c) 0 10 20 30 40 50 60 70 80 i c , c o l l e c t o r c u r r e n t ( a ) 170 180 190 200 210 220 230 240 i c , peak collector current (a) 400 500 600 700 800 900 1000 e n e r g y p e r p u l s e ( j ) v cc = 240v l = 220nh c = variable 100c 25c 25 50 75 100 125 150 t j , temperature (oc) 200 400 600 800 1000 1200 1400 e n e r g y p e r p u l s e ( j ) v cc = 240v l = 220nh t = 1s half sine c= 0.4f c= 0.3f c= 0.2f 180 190 200 210 220 230 240 v ce, collector-to-emitter voltage (v) 400 500 600 700 800 900 1000 e n e r g y p e r p u l s e ( j ) l = 220nh c = 0.4f 100c 25c 25 50 75 100 125 150 case temperature (c) 0 100 200 300 r e p e t i t i v e p e a k c u r r e n t ( a ) ton= 2s duty cycle = 0.1 half sine wave 1 10 100 1000 v ce (v) 1 10 100 1000 i c ( a ) 10 s 100 s 1ms downloaded from: http:///

www.irf.com 5 fig 15. maximum effective transient thermal impedance, junction-to-case (igbt) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.146 0.0001310.382 0.001707 0.271 0.014532 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri fig 13. typical capacitance vs. collector-to-emitter voltage fig 14. typical gate charge vs. gate-to-emitter voltage fig 16. maximum effective transient thermal impedance, junction-to-case (diode) 0 100 200 300 v ce (v) 10 100 1000 10000 c a p a c i t a n c e ( p f ) cies coes cres 0 20 40 60 80 100 120 q g total gate charge (nc) 0 5 10 15 20 25 v g e , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 240v vds= 200v vds= 150v i d = 25a 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) ? (sec) 0.07854 0.000637 0.829201 0.000532 1.002895 0.003412 0.490875 0.055432 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 downloaded from: http:///

6 www.irf.com
 
   
   !    "
# $!$!!    " fig 21a . t st and e pulse test circuit fig 21b . t st test waveforms fig 21c . e pulse test waveforms 1k vcc dut 0 l fig. 22 - gate charge circuit (turn-off) dri ver dut l c vcc rg rg b a ipul se energy v ce i c current pulse a pulse b t st fig.20 - switching loss circuit 100 1000 di f / dt - (a / s) 20 30 40 50 60 70 80 90 t r r - ( n s ) i f = 8.0a, t j =125c i f = 8.0a, t j =25c 0.0 0.5 1.0 1.5 2.0 2.5 v fm , forward voltage drop (v) 0.1 1 10 100 i f , i n s t a n t a n e o u s f o r w a r d c u r r e n t ( a ) tj = 150c tj = 25c 100 1000 di f / dt - (a / s) 0 100 200 300 400 q r r - ( n s ) i f = 8.0a, t j =125c i f = 8.0a, t j =25c downloaded from: http:///

www.irf.com 7 data and specifications subject to change without notice. this product has been designed for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 04/2010 note: for the most current drawing please refer to ir website at http://www.irf.com/package/pkigbt.html to-220ab packages are not recommended for surface mount application. 

 
 

  
   
  
     !"!# $%$&'   ()  (**
+,    - (    () . ) /,   *0
 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRG6B330UD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X